| USN | | , i | | | | | |------|--|-----|--|--|--|--| | USIN | | | | | | | ## First/Second Semester B.E. Degree Examination, Dec.2013/Jan.2014 ## **Elements of Mechanical Engineering** | | 1. Answer any FIVE full questions, choosing | a at least two from each next | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | |------------|--|---|---------------------------------------| | • | 2. Answer all objective type questions only in | | er hooklet | | | 3. Answer to objective type questions on shee | | | | | 4. Use of steam table is permitted. | | | | | , | | | | | PART – | A | | | 1 a. | Choose the orrect answers for the following | ∵ .⊘ | (04 Marks) | | | i) Coal is prexample for energy s | | | | | A) renewable B) non-renewable | C) celestial energy D) bio | -mass | | | ii) Photosynthesis process is also known as | | | | | A) Helio thermal process | B) Helio chemical process | | | | C) Helio electrical process | D) Pizeo electric process | | | | iii) Partially dry steam and partially wet par | ticles in steam called as | | | | A) dry steam | B) super heated steam | | | | C) saturated water | D) wet steam | | | | iv) Babcock and Wilcox boiler is an examp | ole for | | | | A) fire tube boiler | B) vertical boiler | | | | C) single tube boiler | D) externally fired boiler | | | b. | Name any four boiler mountings and state the | functions. | (02 Marks) | | c. | With the help of neat sketch, explain the work | ing of a Francis turbine. | (08 Marks) | | d. | Determine the total heat content per unit mas | s at the following state using the | steam tables. | | | Assume ambient pressure to be 100 kPa and C | $C_P = 2.0934 \text{ kJ/kg}.$ | | | | i) 10 bar absolute and 300°C | _ | | | | ii) 100 kPa gauge and 100 kPa abs and 250°C | 3 | | | | iii) Dry steam at 100 kPa abs | | | | | iv) Steam at 12 bar and 95% dry. | . | (06 Marks) | | | | | | | | Choose the correct answers for the following | : `O _y | | | a. | | | (04 Marks) | | a. | i) Steam turbine converts in to mec | | (04 Marks) | | e a. | | hanical energy. | (04 Marks)
tential | | 2 a. | i) Steam turbine converts in to mec | hanical energy. C) velocity D) põ | tential | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight | hanical energy. C) velocity D) põ | tential | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n | hanical energy. C) velocity D) põ | tential | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as | hanical energy. C) velocity Ozzle and two or more set of m B) pressure compounding | tential
noving blades | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding | hanical energy. C) velocity Ozzle and two or more set of m | tential
noving blades | | a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding | hanical energy. C) velocity O) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compou | tential
noving blades | | a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compounding B) low head water turbine | tential
noving blades | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine C) impulse water turbine | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compounding D) velocity pressure compounding D) steam turbine | tential
noving blades
anding | | a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine C) impulse water turbine | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compou B) low head water turbine D) steam turbine into the mechanical power called | tential
noving blades
anding | | 2 a. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine C) impulse water turbine iv) Combustioned gas is directly converted | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compounding D) velocity pressure compounding b) low head water turbine D) steam turbine into the mechanical power called B) impulse turbine | tential
noving blades
anding | | 2 a.
b. | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine C) impulse water turbine iv) Combustioned gas is directly converted A) reaction turbine C) open or closed gas turbine | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compou B) low head water turbine D) steam turbine into the mechanical power called B) impulse turbine D) steam turbine | tential
noving blades
anding | | | i) Steam turbine converts in to mec A) kinetic energy B) weight ii) Compounding consists of one set of n called as A) velocity compounding C) pressure velocity compounding iii) Pelton wheel is example for A) reaction water turbine C) impulse water turbine iv) Combustioned gas is directly converted A) reaction turbine | hanical energy. C) velocity D) po ozzle and two or more set of m B) pressure compounding D) velocity pressure compou B) low head water turbine D) steam turbine into the mechanical power called B) impulse turbine D) steam turbine urbine. | tential
noving blades
anding | | | 3 | a. | Choose the correct answers for the following: | | | | | | | |--------------|--|--------|--|---------------------------------|-------------------|--|--|--|--| | | | | i) Otto cycle engine is an example for | C) deal assiss D) at | 11 - 6 -1 | | | | | | | | | A) petrol engine B) diesel engine | C) dual engine D) al | ll of these | | | | | | - | | | ii) 4 stroke engine has power stroke in | B) every alternative cycle | · Ps. | | | | | | \mathbf{Y} | | | A) every cycle | | Manda dana | | | | | | |) | | C) every third cycle iii) In two stroke petrol engine compressive ra | D) in all the revolution of the | crank sna | | | | | | G | 1/ | e
* | iii) In two stroke petrol engine compressive ra A) 1:22 B) 1:11 | C) 1:1 D) 1 | ·80 ~ 0, ' | | | | | | | | | iv) Diesel cycle engine is also called as | C) 1:1 | .00 k × ~ | | | | | | | | | A) constant volume cycle | B) constant pressure cycle | | | | | | | | | | C) dual cycle | D) all of these | | | | | | | | | Ъ. | Explain with a neat figure 4 stroke petrol engine. | · · | (08 Marks) | | | | | | | | c. | | | | | | | | | d. | | | Give advantages of two stroke engine over four stroke engine. | | | | | | | | | | ٠ | W | | (04 Marks) | | | | | | | 4 | a. | Choose the corner answers for the following: | , ~ () | (04 Marks) | | | | | | | • | | i) Good refrigerant should be | 0/, | (01.1141.115) | | | | | | | | | A) high boiling point | B) flammable | | | | | | | | | | C) low thermal conductivity | D) non-toxic | | | | | | | | | | 2,3000 | | | | | | | | | ii) Unit of refrigeration is A) COP of refrigeration B) Ton of refrigeration | | | | | | | | | | | | | C) Ampere of refrigeration | D) None of these | | | | | | | | | | | gerator. | | | | | | | | | | A) Household | B) absorption | | | | | | | | | | C) vapour compression | D) air conditioner | | | | | | | | | | iv) Function of the throttle valve in a refrigere | | | | | | | | | | | A) reduce the pressure | S | | | | | | | | B) increase the pressure C) converts vapour refrigerant into liquid | D) liquid refrigerant into vapour conversion | n | | | | | | | | b. Describe with a neat sketch, the working of vapour absorption refrigerator.c. With a neat sketch of a room air-conditioner, explain its working principle. | | | | (08 Marks) | | | | | | | | | | | (08 Marks) | | | | | | | | | DADT D | | | | | | | | | 5 | a. | Choose the correct answers for the following: | * £ * * | (0.4.34 | | | | | | | 3 | а. | i) A function of the lathe is | 7.5 | (04 Marks) | | | | | | | | | i) A produce cylindrical parts | B) produce key holes | - | | | | | | | | | C) produce slots | D) all of these | * | | | | | | | | | ii) Speed lathe is example for | D) an of these | | | | | | | | | | A) geared head lathe B) simple lathe | C) universal lathe D) ca | ption lathe | | | | | | | | | iii) Reaming operation is a | c) universal lattic b) ca | ipuon iame | | | | | | | | | A) drill operation | B) lathe operation | | | | | | | | | | C) milling operation | D) grinding operation | 9. | | | | | | | | | iv) Radial drilling machine is used for | b) grading operation | | | | | | | | A) small works B) medium works | | | | | | | | | | | C) medium and heavy works D) all of these | | | | | | | | | | | | b. | With a neat sketch, explain construction and open | , | ne. (08 Marks) | | | | | | | c. Explain with figure taper turning with compound slide swiveling method. | | | (08 Marks) | | | | | | | | | | . Explain with figure taper taking with compound since swiveling inclined. | | | | | | | | 6 | a. | · · · · · · · · · · · · · · · · · · · | | | | (04 Marks) | | | | |-----|--|--|-----------------------------|-----------------------|---|-----------------------|--|--|--| | | | i) | Milling machine removes | s the metal using | | | | | | | | | A) multi point cutting tool | | | B) single point cutting tool | | | | | | | | | C) abrasive wheel | | D) drill bit | | | | | | | | ii) | Work piece and cutting to | ool moves in the sar | · · | | | | | | | | A) up milling | | | B) down milling | | | | | | | | | C) combination of up an | d down milling | | | | | | | | | iii) | Emery is an example for | | · | | | | | | | | • | | synthetic | C) artificial | D) clay | | | | | | ~ (| Jy) | Center less grinding is u | • | • | D) clay | | | | | | | | A) long work piece | | B) short work piece | O. Y | | | | | | | 100 | E) both long and short w | ork piece | D) internal grinding | | | | | | | b. | With | the help of a neat sketch. | explain the working | king of a universal milling machine. (08 Ma | | | | | | | ¢. | | ain with figure working pr | | = | (06 Marks) | | | | | | d. | _ | ain any two milling operat | - | | | | | | | | ٠. | 2 | and any two mining operat | | | (02 Marks) | | | | | 7 | a. | Cho | ose the correct answers for | r the following: | | (04 Marks) | | | | | | | i) | Fusion welding is an exa- | | | | | | | | | | ĺ | A) resistance welding | • | B) arc welding | | | | | | | | | C) forge welding | | D) Thermit pressure | welding | | | | | | | ii) | Copper base filler metal | sused for Ω : | , | J | | | | | | | , | A) soft soldering B) | | C) brazing | D) welding | | | | | | | iii) | Grease is an example for | 4 11, 1 % — | -, | , 0 | | | | | | | , | _ | liquid | C) semi liquid | D) all of these | | | | | | | iv) | Collar bearing is also kn | • | ~, ~~ | _ , | | | | | | | , | A) journal bearing B) | | C) foot step bearing | D) radial bearing | | | | | | b. | Expl | ain the principle of arc we | - | v, | (06 Marks) | | | | | | c. Name the three types of oxy-acetylene flame. Explain the application of e | | | | | | | | | | | | | | | (06 Mai | | | | | | | d. | Desc | ribe the drop feedfal lubri | ication with neat ske | etch e s. | (04 Marks) | | | | | | | | جي جي | | 4 5 | | | | | | 8 | a. | | ose the correct answers for | | | (04 Marks) | | | | | | | i) | Jockey pulley is used for | | | | | | | | | | | A) increase arc of contac | | B) increase speed | | | | | | | | | C) decrease arc of contac | | D) decrease in speed | | | | | | | | ii) | When a belt moves forward | ard without carrying | | <u>.</u> • | | | | | | | | A) slip | | B) creep | | | | | | | | | C) both slip and creep | | D) all of these | | | | | | | e the | iii) | Chain drive is used in | | | - v mass | | | | | | V | | A) center distance less th | | B) high power transr | nission 💛 | | | | | 124 | | | C) positive power transm | | D) all of these | 40 | | | | | | | iv) | Spur gear is example for | Ť | | 1 | | | | | | | | A) parallel axis B) | non-parallel axis | C) co-axial | D) non-intersecting 🔀 | | | | | | b. | With | a neat sketch, explain pas | t and loose pulley. | | (06 Marks) | | | | | | c. | Expl | ain following gears: | | | | | | | | | | | our gear ii) Helical ge | | | | | | | | | d. | | compound train of wheel | | | | | | | | | | | ectively. The wheels B ar | | | | | | | | | | 400 rpm, find the speed of the wheel D. Sketch the arrangements. (04 Mar | | | | | | | |